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Understanding Contention-Based Channels 
and Using Them for Defense (HPCA ‘15)



Distrustful tenants living within a neutral cloud provider
● Shared hardware can be exploited to leak information

○ e.g. CPU usage vs. operation can expose secret key

● Two bodies of solutions:

○ HW-based: state-of-the-art is either limited in scope or requires 

impractical architecture changes

○ SW-based: HomeAlone forgoes shared hardware and permits only 

friendly co-residency, but still vulnerable to an intelligent attacker



Threat model of a co-resident attacker
● Distrustful tenants violate confidentiality or compromise 

availability

● Goal: infer info about victim VM via microarchitectural 

structures e.g. cache and memory controllers

● Side-channel: victim inadvertently (oops!) leaks data 

inferred by attacker

● Covert channel: privileged malicious process on victim 

deliberately leaks data to attacker



Known side-channels to transmit a ‘0’ or a ‘1’ (alt. exec.)

● Alternative execution attacks

○ Timing-driven: measure time to access memory portion

○ Access-driven: measure time to access specific cache 

misses



Known side-channels to transmit a ‘0’ or a ‘1’ (parallel exec.)

● Parallel execution attacks

○ No time sharing required

○ E.g. Receiver monitors latency of memory fetch, sender 

either issues more instructions or idles



Formal model of covert channels
● Detection failure (undetectable flow) = same rate of false positives and 

false negatives for both legitimate and covert traffic

● Network vs. microarchitectural channels:

○ Network receivers read silently

○ Microarch. receivers read destructively (overwrites when reading)

● Main insight: network channels are provably undetectable whereas 

microarch. channels cannot be undetectable (in a noise-free setting)



Creating high-capacity covert channels
1. Deconstructing covert channels into three primitives

a. Communication through contention; offline analysis to determine 

channel parameters; precise synchronization

2. Synchronizing sender-receiver clocks

a. Explicit communication; fine-grained alignment; pilot signal

3. Communication through contention

a. Performance counter-based channels; memory bus and AES 

timing channels; MIMO covert channels



What makes up a covert channel?
1. Communication through contention

a. High vs. low contention = ‘0’ or ‘1’

2. Offline analysis to determine channel parameters

a. Fix time slot duration to prevent bit insertions and deletions

b. With fixed time slot, receiver only needs to handle bit flip errors

3. Precise synchronization

a. Unaligned time periods reduce channel capacity

b. Alignment offers more precise contention and lower errors



Synchronizing sender-receiver clocks
1. Explicit communication

a. W/o, offset can be seconds; okay to 

assume for defense and info. flow 

control implementations

2. Fine-grained alignment

a. Make minor adjustments until timing 

lines up

b. Goal = achieve maximum contention!

3. Pilot signal

a. Use distinguishable pattern



Communication through contention
1. Performance counters

a. Alternative exec.

i. Cache misses: evict receiver data for a ‘1’; busy waits for a ‘0’

ii. Branch misprediction: sender forces poor prediction accuracy 

for a ‘1’; busy waits for a ‘0’

b. Parallel exec.

i. Load and store: issue many loads for a ‘1’; issue none for a ‘0’

ii. Can be used to detect attackers



Other ways to communicate through contention
2. Memory bus and AES timing channels (parallel exec.)

a. Sender issues bus locking instr. or AES instr. for a ‘1’; o/w ‘0’

b. Key consideration: don’t impact CPU frequency scaling

3. MIMO channels

a. More resilient for both attacker comms. and detector

b. Put sender and receiver in same process (avoid scheduling issues)



The bucket model
Assumptions:

● No bkgd. noise, OS 

and bkgd. processes 

can fill bucket

● Time synch., time 

slotted, Eve is aware



How does Eve eavesdrop and jam?



Secrecy and integrity from differential code



Why use the differential code?
Here, Alice transmits a ‘0’ 

under this differential code.

If Eve eavesdrops, then Bob 

MUST read ‘1’. Thus, Bob 

observes two consecutive 

‘1’s and alerts!



Experimental results for channel capacity



Pros and cons of MIMO comms.



How to detect an Eve with a friendly VM (Claude)
● Optimal detection pattern is to transmit consecutive 0s

● H/e, noise makes it hard for Claude to distinguish btwn 

Eve and real noise

● Idea: Claude should mimic the target application so Eve 

cannot know when Claude is monitoring





Claude’s detector seems unaffected by his added noise



Takeaways
● Software leaks and covert channels can abuse this well!

● Alternate solution from CCS ‘15: Nomad focuses directly 

on co-residency problem and proposes 

migration-as-a-service as a side-channel agnostic solution

● Security is necessary even as earlier as design time, waiting 

until deployment is too late



Spectre Attacks: Exploiting Speculative 
Execution



Speculative Execution
● Speculative execution helps speed up performance when the 

CPU would otherwise stall

● The CPU speculatively executes branches in order to not stall

○ Ex. jump target is not readily available (ex. stored in memory, not available 

yet)

● As long as the CPU reverts state correctly, there are no 

correctness issues 

○ But what about security?



Spectre
● The Spectre paper focuses on exploiting speculatively 

executed branches and jumps

● Variant 1: Conditional branches

● Variant 2: Indirect branches / jumps

● Alternative Variants (briefly mentioned, but not discussed)

○ Mistrained returns

○ Timing variations

○ ALU contention



Spectre Variant 1: Conditional Branches
● Train the CPU’s branch predictor to predict one way, then 

gains access to memory through a later mispredict

● A

●
● Here, an attacker would input valid values for x in order to 

train the branch predictor, then use an invalid value. 

● The processor still pulls the reads from array1 and array2 into 

the cache, which wouldn’t get flushed during a revert



Spectre Variant 2: Gadgets
● Based on getting the victim to run “gadgets” in the victim’s 

address space

○ Gadgets are small snippets of assembly, typically ending 

in a ret instruction

● Especially hard to mitigate because the victim code can be 

structurally safe, but still vulnerable



Spectre Variant 2: Indirect Branches
● An attacker trains the BTB to mispredict on an indirect 

branch (one where the address is stored in memory) to jump 

to the gadget. 

● Attacker choose a gadget in the victim’s virtual address space

● Trains the BTB while in the attacker’s address space by 

performing indirect jumps to the correct address

● When the victim code runs, an indirect jump that aliases to 

the same BTB entry will result in the gadget running



Exploiting Spectre 
● Cache Attacks (Flush+Reload / Prime+Probe / Evict+Time)

● Flush+Reload / Prime+Probe

○ Measures which location in array2 was brought into the 

cache to reveal the value of array1[x]

● Evict+Time

○ Call target function again with inbounds array1[x], and if 

the values are equal, it’ll be faster since it’s cached



Exploiting Spectre
● Alternative timing attacks / observable effects

○ Instruction timing 

○ Register file contention

○ Bus contention

○ Electromagnetic radiation 

○ Power consumption



Mitigations
● Prevent speculative execution / branch prediction

○ Dramatic performance drops 

○ Legacy code would all  have to be updated

● Prevent access to secret data 

○ Best for just-in-time compilers / interpreters / language 

based protections or programs like Chrome where each 

program can be a separate process with different 

permissions



Mitigations
● Prevent data from entering covert channels

○ Track if data fetch was a result of a speculative operation

○ Not possible with current hardware 

● Prevent data extraction from covert channels

○ Disable or add jitter to timing sources

○ Not a total mitigation - just adds error



Mitigations
● Prevent branch poisoning

○ Hardware

■ BTB flush 

■ Privilege level isolation (lower privilege levels cannot 

affect indirect jumps of higher privilege levels)

■ Restricting branch prediction sharing

○ Software - Retpoline 

■ Replaces indirect branches with return instructions



Merits
● Discovered a new variant of attacks on a broad range of 

processors

● Describes many different ways to exploit the attack

● Created multiple proof of concepts for each variant with high 

accuracy

● Discussion of mitigation options

● Responsible disclosure of results to CPU vendors



Methodology
● Performed experiments on multiple x86 processors from Intel 

and AMD as well as ARM processor, in several different OSes 

on Google Cloud

● Developed proof-of-concepts in C, Javascript, and eBPF for 

Variant 1

● Developed proof-of-concepts on Windows and a Linux VM 

for Variant 2



Methodology
● Observed indirect branch poisoning on a variety of x86 and 

ARM processors

● Reverse engineered branch predictor internals for Haswell 

processors to develop an “oracle” (a method of determining 

correctness - in this case, whether or not a bit affected the 

branch prediction)



Conclusions
● Speculative execution produces side effects

● Visible side effects can be exploited in many, many ways 

depending on how much energy an attacker wants to put in

● Speculative execution helps with performance, but at the cost 

of security vulnerabilities



Differences between Spectre and Meltdown
● Spectre is based on speculative execution (branch prediction / 

branch target prediction)

○ Affects Intel / AMD / ARM processors

● Meltdown is based on out of order execution based on trap 

instructions

○ Only Intel / ARM processors

● Meltdown mitigations don’t protect against Spectre! 


